# Fraction calculator

The calculator performs basic and advanced operations with fractions, expressions with fractions combined with integers, decimals, and mixed numbers. It also shows detailed step-by-step information about the fraction calculation procedure. Solve problems with two, three, or more fractions and numbers in one expression.

## Result:

### 2 1/8 + 2 1/4 = 35/8 = 4 3/8 = 4.375

Spelled result in words is thirty-five eighths (or four and three eighths).### How do you solve fractions step by step?

- Conversion a mixed number 2 1/8 to a improper fraction: 2 1/8 = 2 1/8 = 2 · 8 + 1/8 = 16 + 1/8 = 17/8

To find a new numerator:

a) Multiply the whole number 2 by the denominator 8. Whole number 2 equally 2 * 8/8 = 16/8

b) Add the answer from previous step 16 to the numerator 1. New numerator is 16 + 1 = 17

c) Write a previous answer (new numerator 17) over the denominator 8.

Two and one eighth is seventeen eighths - Conversion a mixed number 2 1/4 to a improper fraction: 2 1/4 = 2 1/4 = 2 · 4 + 1/4 = 8 + 1/4 = 9/4

To find a new numerator:

a) Multiply the whole number 2 by the denominator 4. Whole number 2 equally 2 * 4/4 = 8/4

b) Add the answer from previous step 8 to the numerator 1. New numerator is 8 + 1 = 9

c) Write a previous answer (new numerator 9) over the denominator 4.

Two and one quarter is nine quarters - Add: 17/8 + 9/4 = 17/8 + 9 · 2/4 · 2 = 17/8 + 18/8 = 17 + 18/8 = 35/8

For adding, subtracting, and comparing fractions, it is suitable to adjust both fractions to a common (equal, identical) denominator. The common denominator you can calculate as the least common multiple of both denominators - LCM(8, 4) = 8. In practice, it is enough to find the common denominator (not necessarily the lowest) by multiplying the denominators: 8 × 4 = 32. In the following intermediate step, the fraction result cannot be further simplified by canceling.

In other words - seventeen eighths plus nine quarters = thirty-five eighths.

#### Rules for expressions with fractions:

**Fractions**- use the slash “/” between the numerator and denominator, i.e., for five-hundredths, enter

**5/100**. If you are using mixed numbers, be sure to leave a single space between the whole and fraction part.

The slash separates the numerator (number above a fraction line) and denominator (number below).

**Mixed numerals**(mixed fractions or mixed numbers) write as non-zero integer separated by one space and fraction i.e.,

**1 2/3**(having the same sign). An example of a negative mixed fraction:

**-5 1/2**.

Because slash is both signs for fraction line and division, we recommended use colon (:) as the operator of division fractions i.e.,

**1/2 : 3**.

Decimals (decimal numbers) enter with a decimal point

**.**and they are automatically converted to fractions - i.e.

**1.45**.

The colon

**:**and slash

**/**is the symbol of division. Can be used to divide mixed numbers

**1 2/3 : 4 3/8**or can be used for write complex fractions i.e.

**1/2 : 1/3**.

An asterisk

*****or

**×**is the symbol for multiplication.

Plus

**+**is addition, minus sign

**-**is subtraction and

**()[]**is mathematical parentheses.

The exponentiation/power symbol is

**^**- for example:

**(7/8-4/5)^2**= (7/8-4/5)

^{2}

#### Examples:

• adding fractions: 2/4 + 3/4• subtracting fractions: 2/3 - 1/2

• multiplying fractions: 7/8 * 3/9

• dividing Fractions: 1/2 : 3/4

• exponentiation of fraction: 3/5^3

• fractional exponents: 16 ^ 1/2

• adding fractions and mixed numbers: 8/5 + 6 2/7

• dividing integer and fraction: 5 ÷ 1/2

• complex fractions: 5/8 : 2 2/3

• decimal to fraction: 0.625

• Fraction to Decimal: 1/4

• Fraction to Percent: 1/8 %

• comparing fractions: 1/4 2/3

• multiplying a fraction by a whole number: 6 * 3/4

• square root of a fraction: sqrt(1/16)

• reducing or simplifying the fraction (simplification) - dividing the numerator and denominator of a fraction by the same non-zero number - equivalent fraction: 4/22

• expression with brackets: 1/3 * (1/2 - 3 3/8)

• compound fraction: 3/4 of 5/7

• fractions multiple: 2/3 of 3/5

• divide to find the quotient: 3/5 ÷ 2/3

The calculator follows well-known rules for

**order of operations**. The most common mnemonics for remembering this order of operations are:

**PEMDAS**- Parentheses, Exponents, Multiplication, Division, Addition, Subtraction.

**BEDMAS**- Brackets, Exponents, Division, Multiplication, Addition, Subtraction

**BODMAS**- Brackets, Of or Order, Division, Multiplication, Addition, Subtraction.

**GEMDAS**- Grouping Symbols - brackets (){}, Exponents, Multiplication, Division, Addition, Subtraction.

Be careful, always do

**multiplication and division**before

**addition and subtraction**. Some operators (+ and -) and (* and /) has the same priority and then must evaluate from left to right.

## Fractions in word problems:

- Samuel

Samuel has 1/3 of a bag of rice and Isabella has a 1/2 bag of rice. What fraction of are bag of rice do they have altogether? - Chocolate buyer

Peter bought 1/2 a pound of chocolate at rocky mountain chocolate factory. Later he went to the sweet shoppie and he bought 6/9 of a pound more chocolate. How much chocolate did he buy that day? - Berry Smoothie

Rory has 5/8 cup of milk. How much milk does she have left after she doubles the recipe of the smoothie? Berry Smoothie: 2 cups strawberries 1 cup blueberries 1/4 cup milk 1 tbsp (tablespoon) sugar 1/2 tsp (teaspoon) lemon juice 1/8 tsp (teaspoon) vanilla - Two pizzas

Jacobs mom bought two whole pizzas. He ate 2/10 of the pizza and his dad ate 1 1/5. How much is left. - Carrie

Carrie picked 2/5 of the raspberries from the garden, and Robin picked some too. When they were finished, 1/3 of the raspberries still needed to be picked. What fraction of the raspberries did Robin pick? Use pictures, numbers or words and write your fi - Expressions

Let k represent an unknown number, express the following expressions: 1. The sum of the number n and two 2. The quotient of the numbers n and nine 3. Twice the number n 4. The difference between nine and the number n 5. Nine less than the number n - Complicated sum minus product

What must be subtracted from the sum of 3/8 and 5/16 to get difference equal to the product of 5/8 and 3/16? - Simplify 3

Simplify mixed numerals expression: 8 1/4- 3 2/5 - (2 1/3 - 1/4) Show your solution. - Honey

Ila collected the honey from 3 of her beehives. From the first hive, she collected 2/3 gallons of honey. The last two hives yielded 1/4 gallon each. After using some of the honey she collected for baking, Lila found that she only had 3/4 gallon of honey l - Stock market 2

For the week of July 22, the following day to day changes in the stock market was recorded a certain stock: -2 on Monday; +4 Tuesday; -8 Wednesday; + 2 1/2 Thursday; - 3 1/4 Friday. The stock began the week at 78 points. How many points did it finish with - Peter 2

Peter wanted to have 120 kilogram of fruits. He picked 10 bags . each bags contains 9 1/2 kilograms. How many kilograms he need more? - Evaluate expression

Evaluate expression using BODMAS rule: 1 1/4+1 1/5÷3/5-5/8 - Chestnuts

Three divisions of nature protectors participated in the collection of chestnut trees.1. the division harvested 1250 kg, the 2nd division by a fifth more than the 1st division and the 3rd division by a sixth more than the second division. How many tons of

next math problems »